July the 18th, 2017, PhysCon2017

Malbor Asllani & Timoteo Carletti

Desynchronize abnormal neuron behaviour to control epileptic seizures

www.unamur.be timoteo.carletti@unamur.be
Acknowledgements

IAP VII/19 - DYSCO

LA LIBERTÉ DE CHERCHER

UNIVERSITÉ DE NAMUR
The Brain (i)
The Brain (i)
The Brain (i)

Synchronization is a key issue to achieve the normal behaviour.

The Virtual Brain Project

Human Brain Project
In neurodegenerative diseases, such as Parkinson or epilepsy, abnormal synchronization induces undesired effects such as tremors and epileptic seizures.

Goal: to Reduce/control abnormal synchronization to avoid (lighten) such undesired effects.

- Administration of oral drugs (partially effective Parkinson’s disease but inefficient for nearly 1/3 of epileptic patients)
- Clinical methods (neurostimulation to modulate the neuronal activity to desynchronise the phase dynamics of neurons).
- Deep Brain Stimulation (DBS), microelectrodes are inserted in the basal ganglia.
- Transcranial Magnetic Stimulation (TMS), an external magnetic field interferes with the neuronal activity
Take home message

Our goal is to propose and study of a novel *minimally invasive neurostimulation* procedure principally *oriented* to *suppress* the *abnormal synchronization*.

It could thus be potentially used to reduce focal epileptic seizures or to deal with other neurological diseases.

We need:
- a model;
- a control strategy to reduce synchronisation;
- an operational implementation of such strategy.
A brain model

Neurons modelled as nonlinear oscillators (Stuart-Landau model)

\[\dot{z}_k = \left(a_k + \omega_k - |z_k|^2 \right) z_k + Z_k, \]

where \(Z_k = \frac{K}{N} \sum_{j=1}^{N} A_{kj} z_j \)

\(\omega_k \): natural frequency

\(a_k \): bifurcation parameter

\(<0 \text{ stable eq, } >0 \text{ limit cycle}\)

\(K \): coupling parameter

A simplified brain model

Let $z_k = \rho_k e^{t\phi_k}$ and assume $\rho_k \sim \rho_j$ for all k and j (and $a_k = 1$) then

$$\dot{\phi}_k = \omega_k + \frac{K}{N} \sum_{j=1}^{N} A_{kj} \sin(\phi_j - \phi_k)$$

Kuramoto model
A simplified brain model

Let \(z_k = \rho_k e^{\imath \phi_k} \) and assume \(\rho_k \sim \rho_j \) for all \(k \) and \(j \) (and \(a_k = 1 \)) then

\[
\dot{\phi}_k = \omega_k + \frac{K}{N} \sum_{j=1}^{N} A_{kj} \sin(\phi_j - \phi_k)
\]

Kuramoto model

Order parameter

\[
Re^{\imath \Psi} = \frac{1}{N} \sum_{j=1}^{N} e^{\imath \phi_j}
\]

\[R(t)\]

\[K > K_c\]

\[K < K_c\]
A simplified brain model

Let \(z_k = \rho_k e^{\imath \phi_k} \) and assume \(\rho_k \sim \rho_j \) for all \(k \) and \(j \) (and \(a_k = 1 \)) then

\[
\dot{\phi}_k = \omega_k + \frac{K}{N} \sum_{j=1}^{N} A_{kj} \sin(\phi_j - \phi_k)
\]

Kuramoto model

Order parameter

\[
\text{Re}^{\imath \Psi} = \frac{1}{N} \sum_{j=1}^{N} e^{\imath \phi_j}
\]

\(R(t) \)

\(K > K_c \)

\(K < K_c \)

Nil, partial and full phase-locking in an all-to-all network of Kuramoto oscillators. Phase-locking is governed by the coupling strength \(K \) and the distribution of intrinsic frequencies \(\omega \). Here, the intrinsic frequencies were drawn from a normal distribution (\(\text{M}=0.5\text{Hz}, \text{SD}=0.5\text{Hz} \)). The yellow disk marks the phase centroid. Its radius is a measure of coherence.
The Kuramoto model can be embedded in a (2N-dim) Hamiltonian system.

\[
H(\phi, I) = \sum_i \omega_i I_i - \frac{K}{N} \sum_{i,j} A_{ij} \sqrt{I_i I_j} (I_j - I_i) \sin(\phi_j - \phi_i) \equiv H_0(I) + V(\phi, I)
\]

On the invariant "Kuramoto" torus, the dynamics of \(H \) is the same as the Kuramoto model

\[
\mathcal{T}^K := \{(I, \phi) \in \mathbb{R}^N_+ \times \mathbb{T}^N : I_i = 1/2 \ \forall i\}
\]

Moreover, the Kuramoto oscillators are in a \textit{synchronous} state if and only if the Kuramoto torus is (transversally) \textit{unstable}.

Links between chaos and synchronization (ii)

\[H^{\text{ctrl}}(\phi, I) = H_0(I) + V(\phi, I) + f_V(\phi, I) \]

\[f_V(\phi, I) = \mathcal{O}(K^2) \]

Using the Hamiltonian Control theory one can modify the Hamiltonian system by adding a small term capable to increase the stability of the invariant Kuramoto torus.

Effective control

$\mathbf{f}_V(\phi, \mathbf{I})$

- Control only $M << N$ nodes and add a tunable parameter γ
- Consider a local field generated by the controlled nodes

Effective control
Result for the Kuramoto

\[K \sim 0.1 < 0.4 \sim K_{\text{crit}} \]

original system

controlled system

[Graph showing oscillations in R for different values of K.]
Result for the Kuramoto

\[K \sim 0.1 < 0.4 \sim K_{\text{crit}} \]

original system

controlled system

\[K \]

\[0.15 \]

\[0.05 \]
Result for the Kuramoto

\[K \sim 0.1 < 0.4 \sim K_{crit} \]

original system

controlled system
From the Kuramoto back to Stuart-Landau

\[\dot{z}_k = (1 + \omega_k - |z_k|^2)z_k + Z_k + Z^{ctrl}_k \]
Malbor Asllani & Timoteo Carletti

Desynchronise abnormal neuron behaviour to control epileptic seizures
On the number of controllers and their strength