Statistical theory of quasistationary states beyond the single water-bag case study
Asllani, Malbor; Fanelli, Duccio; Turchi, Alessio; Carletti, Timoteo; Leoncini, Xavier

Published in:

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link to publication
Citation for published version (HARVARD):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 11. Dec. 2018
Statistical theory of quasistationary states beyond the single water-bag case study

Mallbor Assllani,1,† Duccio Fanelli,2,3,‡ Alessio Turchi,3,4,§ Timoteo Carletti,6,¶ and Xavier Leoncini5,∥
1Dipartimento di Energetica, Università di Firenze, via Santa Marta, 3 - I-50139 Firenze, Italy
2Dipartimento di Energetica, Università di Firenze, INFN and CNISM via Santa Marta, 3 - I-50139 Firenze, Italy
3Centro Interdipartimentale per lo Studio delle Dinamiche Compleste, via Sansone, 1 - I-50019 Sesto Fiorentino, Italy
4Dipartimento di Sistemi e Informatica, Università di Firenze,via Santa Marta, 3 - I-50139 Firenze, Italy
5Centre de Physique théorique, Aix-Marseille Université, Campus de Luminy, F-13288 Marseille Cedex 09, France
6naXys, Namur Center for Complex Systems and University of Namur, Namur BE-5000, Belgium

(Received 29 September 2011; revised manuscript received 10 January 2012; published 27 February 2012)

An analytical solution for the out-of-equilibrium quasistationary states of the paradigmatic Hamiltonian mean field (HMF) model can be obtained from a maximum entropy principle. The theory has been so far tested with reference to a specific class of initial condition, the so called (single-level) water-bag type. In this paper a step forward is taken by considering an arbitrary number of overlapping water bags. The theory is benchmarked to direct microcanonical simulations performed for the case of a two-level water-bag. The comparison is shown to return an excellent agreement.

DOI: 10.1103/PhysRevE.85.021148 PACS number(s): 05.20.—y, 05.45.—a, 05.70.Ce, 05.70.Fh

I. INTRODUCTION

Long-range interacting systems (LRS) are becoming a popular topic of investigation [1] in physics due to the rich and intriguing phenomenology that they display. A system is said to fall in the realm of LRS if the two-body potential scales as \(r^{-\alpha} \) with \(\alpha < d \), where \(r \) stands for the interparticle distance and \(d \) the dimension of the embedding space. Several physical systems share this property, which ideally embraces distinct domains of applications. Gravity [2,3] is certainly the most spectacular example among the wide gallery of systems governed by long-range interactions, but equally important are the cases of turbulence [4], plasmas [5], and wave-particle interactions [6,7].

Peculiar and counterintuitive thermodynamics features manifest in LRS: counterintuitive heat can occasionally develop in the microcanonical ensemble [8], close to first-order phase transitions, a surprising fact first discovered in astrophysical context, that seeds statistical ensemble inequivalence [9]. As concerns the dynamics, LRS have been reported to experience a very slow relaxation toward the deputed thermodynamic equilibrium. Indeed, they can be trapped in long lasting out-of-equilibrium phases called quasistationary states (QSSs) [10]. The lifetime of the QSSs diverges with the systems size \(N \). Interestingly, it displays different scaling behaviors versus \(N \), which range from exponential to power law, being relic of the specific initial condition selected. As a consequence, the order the limits \(N \to \infty \) and \(t \to \infty \) are taken does matter. Performing the continuum limit before the infinite time limit implies preventing the system from eventually attaining its equilibrium and so freezing it indefinitely in the QSS phase.

In physical applications where long-range couplings are at play, as the ones mentioned above, the number of elementary constituents composing the system being examined is generally large. The time of duration of the out-of-equilibrium phase can therefore be exceedingly long, definitely longer the the time of observation to which experimentalists are bound. Given this scenario, it is of paramount importance to develop dedicated analytical strategies to gain quantitative insight into the complex and diverse zoology of the QSSs, as revealed by direct numerical simulations. Working along these lines, it was shown that QSS can be successfully interpreted as equilibria of the collisionless Vlasov equation which appears to rule the dynamics of a broad family of long-range models, when recovering the continuum picture from the governing discrete formulation. The average characteristics of the QSS, including the emergence of out-of-equilibrium transitions, can be analytically predicted via a maximum entropy variational principle, pioneered by Lynden-Bell in Ref. [11] and more recently revisited with reference to paradigmatic long-range applications [7,12–14].

As we shall clarify in the forthcoming sections, the predictive adequacy of the Lynden-Bell violent relaxation theory has been so far solely assessed for a very specific class of initial conditions. These are the so called (single) water-bags: particles are assumed to initially populate a bound domain of phase space and therein distributed with a uniform probability. The aim of this paper is to take one simple step forward and challenge the validity of the theory when particles are instead distributed within two (uniformly filled) levels. In principle, any smooth profile could be approximated by a piecewise function, made of an arbitrary number of collated water-bags [15]. Our idea is to perform a first step toward the generalized multilevels setting, by first evaluating the formal complexity of the procedure involved and then drawing a direct comparison with the numerics relative to the two-level case.

To accomplish this task we will focus on the celebrated Hamiltonian mean field model, often referred to as the representative model of long-range interactions. The HMF describes the motion on a circle of an ensemble of \(N \) rotors...
mutually coupled via an all-to-all cosines-like potential. In the continuum limit the single particle distribution function obeys to the Vlasov equation, the driving potential being self-consistently provided by the global magnetization, namely the degree of inherent bunching. QSSs exist for the HMF model and have been deeply studied, both with analytical and numerical means, for the single water-bag case.

The paper is organized as follows. In the next section we shall introduce the discrete HMF model and discuss its continuum Vlasov based representation. We will also introduce the basic of the violent relaxation approach. Then, in Sec. III we shall turn to discussing the generalized water-bag setting, solving, in Sec. IV, the corresponding variational problem. We will then specialize in Sec. V on the two-levels case and compare the theory predictions to the simulations. Finally, in Sec. VI we will sum up and conclude.

II. THE HMF MODEL

The HMF model describes the dynamics of N particles (rotors) moving on a circle and interacting via a mean field potential which is self-consistently generated by the particles themselves. Formally, the HMF is defined by the following Hamiltonian:

$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2} + \frac{1}{2N} \sum_{i,j=1}^{N} [1 - \cos(\theta_i - \theta_j)],$$ \hfill (1)

where θ_i identifies the position of particle i on the circle and p_i is the canonically conjugated momentum. Because the interactions are not bounded to a small number of neighboring particles, the interaction is all-to-all thus the potential is inherently long range.

Starting from the water-bag initial condition, the HMF system experiences a fast relaxation toward an intermediate regime, before the final equilibrium is eventually attained. This metastable phase is a quasistationary state (QSS), the degree of inherent bunching. QSSs exist for the HMF model and have been deeply studied, both with analytical and numerical means, for the single water-bag case.

To monitor the dynamics of the system it is customary to record the time evolution of the magnetization. This latter is from the corresponding equilibrium solutions.

It can be rigorously shown [17] that, in the continuum limit, the HMF system is formally described by the Vlasov equation, which governs the evolution of the single particle distribution function $f(\theta, p, t)$. In formula:

$$\frac{\partial f}{\partial t} + p \frac{\partial f}{\partial \theta} - (M_1[f] \sin \theta - M_2[f] \cos \theta) \frac{\partial f}{\partial p} = 0,$$ \hfill (3)

where $M_1 = \int f \cos \theta d\theta dp$ and $M_2 = \int f \sin \theta d\theta dp$ are the two components of the magnetization \mathbf{M}. With reference to cosmological applications, Lynden-Bell proposed an analytical approach to determine the stationary solutions of the Vlasov equation, pioneering the theory that it is nowadays referred to as to the violent relaxation theory. He first considered the coarse-grained distribution \tilde{f}, obtained by averaging the microscopic $f(\theta, p, t)$ over a finite grid. Then the key idea is to associate to \tilde{f} a mixing entropy $S[\tilde{f}]$, via a rigorous counting of the microscopic configurations that are compatible with a given macroscopic state. The steps involved in the derivation are highlighted in the remaining part of this section.

Following the original discussion in Ref. [11] we remark that: (i) the distribution function $f(\theta, p, t)$ never reaches an equilibrium, if it is looked on a fine enough scale; (ii) conversely, if a finite resolution is allowed for, then the distribution function appears to converge to a stationary profile. Lynden-Bell proposed a formal recipe to compute the equilibrium coarse-grained distribution $\tilde{f}(\theta, p)$, which is eventually attained by the system after an initial violent relaxation. Notice that the time dependence has been dropped in \tilde{f}, so to reflect the fact that we search for a stationary solution.

To apply the statistical mechanics machinery, we divide the phase space into a very large number of microcells each of volume ω. The microcells define an hyperfine support that can be invoked to obtain an adequate representation of the fine grained function f, provided the mass of the phase element that occupies each cell is given. Consider n levels of phase density f_j, $j = 1, \ldots, n$. Then the phase element mass is $f_j \omega$ or 0. Lynden-Bell suggested to group these microcells into coarse-grained microcells, still very small, but sufficiently large to contain several microcells. Let us call ν the number of microcells inside the macrocell, the latter having therefore volume $\nu \omega$. Define n_{ij} the number of elements with phase density f_j that populate cell i, located in (θ_i, p_i). Clearly $\sum_{i} n_{ij} = N_j$, where N_j stands for the number of microcells occupied by level f_j.

The sought entropy can be rigorously derived via the following steps. First, we quantify the number of ways of assigning the microcells to all $\sum_j n_{ij}$ phase elements that are confined in the macrocell i. A simple combinatorial argument yields to the estimate

$$\frac{\nu!}{(\nu - \sum_j n_{ij})!}. \hfill (4)$$

Then, one needs to calculate the total number of microstates W that are compatible with the single macrostate defined by the numbers n_{ij}. W is the product of (4) with the total number
of ways of splitting the pool of available \(N_j \) elements into groups of \(n_{ij} \). In formulas

\[
W = \frac{N_j!}{\prod_i (n_{ij})!} \prod_i (v - \sum_j n_{ij})!.
\]

Finally, the entropy \(S = \log(W) \) can be cast in the form

\[
S = -\sum_j \sum_i \frac{n_{ij}}{v} \log \frac{n_{ij}}{v} - \sum_i \left(1 - \sum_j \frac{n_{ij}}{v} \right) \log \left(1 - \sum_j \frac{n_{ij}}{v} \right),
\]

where we have rescaled \(S \) by \(v \) and neglected some unimportant constant contributions. The term \(\sum_i (1 - \sum_j n_{ij}/v) \log(1 - \sum_j n_{ij}/v) \) reflects the exclusion principle that is being imposed in the combinatorial analysis. Two elements of phase cannot overlap, each microcell being solely occupied by one of the available density levels, including zero. As emphasized in Ref. [11], this procedure results in a novel level distribution, including zero. As emphasized in Ref. [11], this procedure results in a novel level distribution, including zero. As emphasized in Ref. [11], this procedure results in a novel level distribution, including zero. As emphasized in Ref. [11], this procedure results in a novel level distribution, including zero. As emphasized in Ref. [11], this procedure results in a novel level distribution, including zero. As emphasized in Ref. [11], this procedure results in a novel level distribution, including zero.

Following Lynden-Bell, one can define the coarse-grained distribution function \(\tilde{f} \) in \((\theta_i, p_i)\) as

\[
\tilde{f}(\theta_i, p_i) = \sum_j \frac{n_{ij}}{v} f_j = \sum_j \rho_{ij} f_j.
\]

The density \(\rho_{ij} \) and the coarse-grained distribution \(\tilde{f}(\theta_i, p_i) \) are two main quantities upon which the description relies. However, these are not independent quantities. Let us write the density as \(\rho_{ij} = \alpha_j h_i \). The density factorizes hence into two terms: \(h_i \) depends on the \(i \)th cell, while the other contribution \(\alpha_j \) on the \(J \)th level. By inserting this ansatz into the definition (9) for \(\tilde{f}(\theta_i, p_i) \) we get

\[
\tilde{f}(\theta_i, p_i) = \sum_j \alpha_j h_i f_j
\]

for all \(i \), from which we straightforwardly obtain

\[
h_i = \tilde{f}(\theta_i, p_i)
\]

(11)

together with the normalization condition

\[
\sum_j f_j \alpha_j = 1.
\]

Hence, summarizing we can rewrite (7) as

\[
\rho_{ij} = \tilde{f}(\theta_i, p_i) \alpha_j,
\]

(13)

which admits a simple interpretation. The probability of finding an element of phase density \(f_j \) in cell \(i \) is given by the probability of finding any element in such a cell, \(\tilde{f}(\theta_i, p_i) \), times the probability that the selected element is actually of type \(f_j \). Reasoning along these lines, \(\alpha_j \) can be seen as the relative fraction of phase space volume that hosts the elements of phase density \(f_j \).

Finally, one can obtain a compact expression for \(\rho_{ij} \) that explicitly evidences all allowed levels:

\[
\rho_{ij} = \sum_k \tilde{f}(\theta_i, p_i) \alpha_k \delta_{LkJ}.
\]

(14)

By taking the continuum limit both in the spatial variable \((\theta_i, p_i) \rightarrow (\theta, p)\), and in the level distribution \(f_j \rightarrow \eta \), one obtains the generalized density function \(\rho(\theta, p, \eta) \). Operating under this condition, (9) rewrites as

\[
\tilde{f}(\theta, p) = \int_{\text{levels}} \rho(\theta, p, \eta) \eta \, d\eta,
\]

(15)

and (14) takes the form

\[
\rho(\theta, p, \eta) = \int_{\text{levels}} dx \tilde{f}(\theta, p) \alpha(x) b(x - \eta),
\]

(16)

where \(\alpha(x) \) is the volume of the set of points \((\theta, p)\) such that \(f(\theta, p) = x \).

In the following we will be concerned with the intermediate situation where the levels are discrete in number. In this case, by using the spatially continuous version of Eq. (14) in the entropy (8), one gets

\[
S(f) = -\int d\tau' \left\{ \sum_j \alpha_j \tilde{f}(\theta, p) \log \sum_j \alpha_j \tilde{f}(\theta, p)
\right.
\]

\[
+ \left. \left[1 - \sum_j \alpha_j \tilde{f}(\theta, p) \right] \log \left[1 - \sum_j \alpha_j \tilde{f}(\theta, p) \right] \right\},
\]

(17)

where \(d\tau' = d\eta d\alpha/(\tilde{\omega}v) \) and the \(\sum_j \) cumulates the contribution of all levels that insists on cell \(i \).

The equilibrium coarse-grained distribution function \(\tilde{f} \) maximizes the entropy functional \(S(\tilde{f}) \), while imposing the constraints of the dynamics. These latter are the energy, momentum, and normalization, as well as the phase space volumes \(\alpha_j \) associated with each of the allowed levels. In the following we shall discuss a specific class of initial condition, the multilevel water-bags, which naturally extends beyond the single water-bag case study, so far explicitly considered in the literature. It is our intention to test the predictability of the Lynden-Bell theory within such generalized framework. The theory will be developed with reference to the general setting, including \(n \) levels. The benchmark with direct simulations will be instead limited to the two-levels case, that is, \(n = 2 \).
III. THE GENERALIZED WATER-BAG

The single water-bag initial condition takes a constant value \(f_1 \) within a finite portion of the phase space, and zero outside of it. Although this is the only prescription to be accommodated for, rectangular domains are usually chosen for practical computational reasons. Following [13], we shall label \([\Delta \theta_1, \Delta \phi_1] \) the widths of such a rectangle, as calculated, respectively, along \(\theta \) and \(\phi \) directions. A second simplification is also customarily assumed: the rectangle is centered in the origin, so that \(\theta \in [-\Delta \theta_1, \Delta \theta_1] \) and \(\phi \in [-\Delta \phi_1, \Delta \phi_1] \).

By operating in this context, the Lynden-Bell variational problem studied in, for example, [13], is shown to yield to a Fermionic stationary distribution, which successfully enables us to capture some of the essential traits of the QSS. These includes an accurate characterization of the out-of-equilibrium transitions from magnetized to nonmagnetized QSS. First- and second-order phase transitions, that merge in a tricritical point, were in fact singled out for the HMF model, a theoretical model, relative to the generalized

Let us start by recalling the generic \(n \)-levels entropy which was shown to take the following functional form:

\[
S(\vec{f}) = -\int d\tau \left[\sum_{\alpha J} \log \frac{\vec{f}}{f_{\alpha J}} + \left(1 - \sum_{\alpha J} \vec{f} \alpha J \right) \log \left(1 - \sum_{\alpha J} \vec{f} \alpha J \right) \right]
\]

which coincides with the Fermionic-like functional that is known to apply to the single water-bag case study [7,11,13].

IV. THE GENERALIZED \(n \)-LEVELS EQUILIBRIUM

The QSS distribution function \(\vec{f}_{\text{eq}}(\theta, \phi) \) for the HMF model, relative to the generalized \(n \)-levels water-bag initial condition, is found by maximizing the Lynden-Bell entropy, under the constrains of the dynamics. This in turn implies solving a variational problem. The solution is relative to the microcanonical ensemble since the Vlasov equation implies that we work with fixed total energy.

Let us start by recalling the generic \(n \)-levels entropy which was shown to take the following functional form:

\[
S(\vec{f}) = -\int \left\{ \sum_{\alpha J} \log \left(\vec{f} \alpha J \right) \right\} d\theta d\phi.
\]

The conserved quantities are respectively the energy \(E \):

\[
E(\vec{f}) = \int \frac{\rho^2}{2} \vec{f}(\theta, \phi) d\theta d\phi - \frac{M[\vec{f}]^2 - 1}{2} = E_n.
\]

and the total momentum \(P \),

\[
P(\vec{f}) = \int \vec{f}(\theta, \phi) p d\theta d\phi \equiv P_n.
\]

The scalar quantity \(E_n \) relates to the geometric characteristics of the bounded domains that define our initial condition. Conversely, as we will be dealing with patches \(\Gamma_J \) symmetric with respect to the origin, one can immediately realize that \(P_n = 0 \).

The \(n \) volumes of phase space, each deputed to hosting one of the considered levels, are also invariant of the dynamics. We have therefore to account for the conservation of \(n \) additional quantities, the volumes \(\Omega_J(\vec{f}) \) for \(J = 1, \ldots, n \), defined as

\[
\Omega_J(\vec{f}) = \int \vec{f}(\theta, \phi) \alpha_J d\theta d\phi.
\]

Moreover, using the normalization condition for the coarse-grained distribution function \(\vec{f}(\theta, \phi) \), we get \(\Omega_J(\vec{f}) = \alpha_J \). Equivalently, by imposing the above constraints on the hypervolumes, we also guarantee the normalization of the distribution function, which physically amounts to impose the conservation of the mass.
Summing up, the variational problem that needs to be solved to eventually recover the stationary distribution \(f_{\text{eq}}(\theta, p) \) reads

\[
\text{max}_f \{ S[f] \mid E[f] = E_i; \quad P[f] = P_i; \quad \Omega J[f] = \alpha_J \},
\]

where the entropy functional \(S[f] \) is given by Eq. (20). This immediately translates into

\[
\delta S - \beta \delta E - \lambda \delta P - \sum_{j=1}^{n} \mu_j \delta \Omega_j = 0,
\]

where \(\beta, \lambda, \) and \(\mu_j \) stands for the Lagrange multipliers associated, respectively, to energy, momentum, and volumes (or equivalently mass) conservations.

A straightforward calculation yields to the following expression for \(f_{\text{eq}}(\theta, p) \):

\[
f_{\text{eq}} = \frac{1}{B + A e^{\beta \left(\mu_s M \right) + \mu_p + \mu'}},
\]

where

\[
B = \sum_{j=1}^{n} \alpha_j; \quad A = \prod_{j=1}^{n} \alpha_j^j, \quad \theta = \sqrt{\frac{\lambda}{B}}.
\]

and \(\mu = [\cos(\theta), \sin(\theta)] \).

The above solution is clearly consistent with that obtained for the single water-bag case study [13]. This latter is in fact recovered in the limit \((\alpha_j \rightarrow 0) \) for \(J > 1 \) while \(\alpha_1 = \frac{1}{f_1} \)

\[
\lim_{\alpha_j \rightarrow 0, j \neq 1} f_{\text{eq}} = \frac{f_1}{1 + e^{\beta \left(\mu_1 + \left(M_1 m \right) + \mu_s + \mu_p \right)}}.
\]

Notice that the equilibrium distribution \(f_{\text{eq}} \) depends on \(M \), which is in turn a function of \(f_{\text{eq}} \). The two components of the magnetization, respectively, \(M_s \), and \(M_p \), are therefore unknowns of the problem, implicitly dependent on \(f_{\text{eq}} \). This latter is parametrized in terms of the Lagrange multipliers. Their values need to be self-consistently singled out. As a first simplification we observe that the specific symmetry of the selected initial condition \((P_s = 0) \) implies \(\lambda = 0 \). Hence, just the two residual Lagrange multipliers are to be computed: the Lynden-Bell inverse temperature \(\beta \) and the cumulational chemical potential \(\mu' \).

The number of total unknowns therefore are four \((M_s, M_p, \beta, \mu') \) and enter the following system of implicit equations for the constraints:

\[
E = \frac{\tilde{A}}{2 \beta^{3/2}} \int e^{\beta M} M F_2(y) d\theta - \frac{M^2 - 1}{2},
\]

\[
1 = \frac{\tilde{A}}{\sqrt{\beta}} \int e^{\beta M} M F_0(y) d\theta.
\]

Here we have expressed the relations as function of the Fermi integrals \(F_n(y) = \int \frac{\mu_s e^{\beta y}}{1 + e^{\beta y}} dp \), with \(y = \alpha e^{\beta M} m \) and \(\tilde{A} = \lambda^{-1} e^{-\mu'} \). The system of Eqs. (30)–(33) can be solved numerically. In doing so one obtains a numerical value for the involved Lagrange multipliers, as well as for the magnetization components, by varying the parameters that encode for the initial condition. We numerically checked (data not shown) that in the limit of a single water-bag \(\alpha_{J,1} \rightarrow 0 \) the solution reported in Ref. [13] is indeed recovered. In the following section we turn to discussing the theory predictions with reference to the simple case of two water-bag \((n = 2) \), validating the results versus direct numerical simulations.

V. THE CASE \(n = 2 \): THEORY PREDICTIONS AND NUMERICAL SIMULATIONS.

We here consider the simplifying setting where two levels \((n = 2) \) water-bag are allowed for. We are in particular interested in monitoring the dependence of \(M = \sqrt{M_x^2 + M_y^2} \) versus the various parameters that characterize the initial condition. We recall in fact that, for the case of a single water-bag, out of equilibrium transitions have been found [13], which separates between homogeneous and magnetized phases. A natural question is thus to understand what is going to happen if one additional level is introduced in the initial condition. The level \(f_1 \) is associated with a rectangular domain \(\Gamma_1 \) of respective widths \(\Delta \theta_1 \) and \(\Delta p_1 \). The level \(f_2 \) instead on an adjacent domain \(\Gamma_2 \), whose external perimeter is delimited by a rectangle of dimensions \(\Delta \theta_2 \) and \(\Delta p_2 \).

The corresponding surface totals hence \(\Delta \theta_1 \Delta p_2 - \Delta \theta_2 \Delta p_1 \).

Recall that the energy \(E_2 (E_2 \text{ for } n = 2) \) can be estimated as dictated by formula (21) and reads in this specific case:

\[
E_2 = \frac{1}{24} \left[f_1 \Delta \theta_1 \Delta p_1^3 + (f_2 - f_1) \Delta \theta_1 \Delta p_2^3 \right] + \frac{1 - 16 [f_1 \Delta p_1 \sin \Delta \theta_1/2 + (f_2 - f_1) \Delta p_2 \sin \Delta \theta_2/2]}{2}.
\]

The one-level limit is readily recovered by simultaneously imposing \(\Delta \theta_2 \rightarrow 0 \) and \(\Delta p_2 \rightarrow 0 \) (which also implies \(\alpha_1 \rightarrow 0 \)). By invoking the normalization condition (12) the following relation holds:

\[
\lim_{\Delta \theta_2, \Delta p_2 \rightarrow 0} E_2 = \frac{1}{6} \Delta p_1^3 + \frac{1}{6} (1 - M_0^2),
\]

where \(M_0 = \sin(\Delta \theta_1/2)/\Delta \theta_1 \). The above relation coincides with the canonical expression for \(E_1 \), as, for example, derived in Ref. [18].

Relation (34) enables us to estimate the energy associated to the selected initial condition and can be used in the self-consistency equations (30). Before turning to illustrate...
The magnetization M reduces for $n = 2$ to
\[\alpha_1 f_1 + \alpha_2 f_2 = 1. \]

To explore the parameter space we have decided to monitor the dependence of M on f_1, which therefore acts as a control parameter. To this end we proceed by fixing the quantity $\Delta f = f_2 - f_1$, while moving the control parameter f_1. The analysis is repeated for distinct values of Δf (from left to right $\Delta f = 0.2, 0.15, 0.1, 0.05$). α_2 is computed according to Eq. (12). For $f_1 \to 1/\alpha_2 = 0.2$ the magnetization condition yields to $\alpha_2 \to 0$, and the distribution collapses to the limiting case of a single water-bag.

The analysis is then repeated for distinct choices of Δf, to eventually elaborate on the importance of such a crucial parameter. The results are displayed in Fig. 2. The curves collapse toward a point that corresponds to the limiting condition $\alpha_2 \to 0$ ($f_1 \to 1/\alpha_1$); this special solution is met when the hypervolume populated by the level f_2 shrinks to zero, so driving the system toward the standard one level setting. By progressively reducing f_1 the predicted magnetization first increases and subsequently decreases to eventually reach zero at a critical threshold f_1^c. For $f_1 > f_1^c$ the system is predicted to evolve toward a magnetized, hence nonhomogeneous phase. Alternatively, for $0 < f_1 < f_1^c$ a homogeneous phase is expected to occur. Interestingly, the transition point f_1^c depends on the selected Δf: the larger Δf the smaller the value of the transition point, corresponding to a shift to the left in Fig. 2. Notice that above a limiting value of Δf, which self-consistently corresponds to imposing $\alpha_2 > 1/\Delta f$, the value of f_1 has to forcefully become negative to respect the normalization condition. A well hence opens up in phase space, an intriguing scenario that can be formally handled within the descriptive Vlasov framework but that we have here deliberately omitted to deepen any further. The smooth phase transition as depicted in Fig. 2 is therefore lost above a threshold value of Δf, when the predicted value of M associated to $f_1 = 0$ turns out to be greater than zero.

To elucidate the specificity of the outlined transition, we plot in Fig. 3 the energy E_2 associated with each of the selected initial conditions, versus f_1, for the same choice of parameters as employed in Fig. 2. As suggested by visual inspection of the figure, the transitions, which we recall take place within a finite window in f_1, always occur for an identical value of the energy (in this case $E_2^c \simeq 0.675$). The transition point is hence insensitive to the specificity of the two water-bags, being neither dependent on their associated volumes nor relative heights. It is in principle possible to extend the above analysis and so reconstruct the complete transition surface in the (f_1, f_2, E) space, a task which proves however demanding from the computational viewpoint and falls outside the scope of the present paper.

To test the validity of the theory we have run a series of numerical simulations of the HMF model. The implementation is based on fifth order McLachlan-Atela algorithm [19] with a time step $\delta t = 0.1$. The initial condition is of a two levels water-bag type, with respective domains assigned as follows the aforementioned prescriptions. As a preliminary check we have monitored the approach to equilibrium (Fig. 4).
As expected and generalizing the conclusion that have been shown to hold for the simpler one level water-bag family of initial conditions, the system settles down into a QSS, whose lifetime grows with the number of simulated particles (data not shown). The QSS are indeed the target of our analysis and it is the magnetization as recorded in the QSS phase that needs to be compared to the Lynden-Bell predictions. The comparison between theory and simulations is reported in Fig. 5. Filled symbols refer to the simulation while the solid lines stand for the theory, for two distinct choice of Δf. The agreement is certainly satisfying and points to the validity of the Lynden-Bell interpretative framework, beyond the case of the single water-bag, so far discussed in the literature.

VI. CONCLUSIONS

The dynamics of long-range interacting system is studied, as concerns the intriguing emergence of long lasting quasistationary states. The problem is tackled within the context of the Hamiltonian mean field model, a very popular and paradigmatic case study. Building on previous evidences, the QSS are interpreted as stable equilibria of the Vlasov equation, which rules the dynamics of the discrete HMF system in the infinite system size limit ($N \to \infty$). The QSS are hence characterized analytically by means of a maximum entropy principle inspired to the seminal work of Lynden-Bell. This technique is known to yield to reliable predictions when dealing with a very specific class of initial condition, the so called (single) water-bag. The scope of this paper is to push forward the analysis by considering the case where multiple water-bags are allowed for. The theory is challenged with reference to the case of a two levels water-bag initial condition and the comparison with the simulations proves accurate. Phase transitions are in fact predicted and observed in direct N-body simulations. Motivated by this success, we argue that the Lynden-Bell approach could be adapted to more complex, and so realistic, family of initial conditions.

ACKNOWLEDGMENT

The work of T.C. has been partially supported by the FNRS Grant “Mission Scientifique 2010-2011.”