Efficient control of accelerator maps
Boreux, Jehan; Carletti, Timoteo; Skokos, C.; Papaphilippou, Y.; Vittot, M.

Published in:
International Journal of Bifurcation and Chaos

DOI:
10.1142/S0218127412502197

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication
Citation for published version (HARVARD):
Recently, the Hamiltonian Control Theory was used in [Boreux et al., 2010] to increase the dynamic aperture of a ring particle accelerator having a localized thin sextupole magnet. In this letter, these results are extended by proving that a simplified version of the obtained general control term leads to significant improvements of the dynamic aperture of the uncontrolled model. In addition, the dynamics of flat beams based on the same accelerator model can be significantly improved by a reduced controlled term applied in only 1 degree of freedom.

Keywords: Hamiltonian control, Particle accelerators, Dynamical aperture, Symplectic maps, SALI method
1. Introduction

Hamiltonian Control Theory has been developed in [Vittot, 2004; Chandre et al., 2005] with the aim to improve some selected features of a given Hamiltonian system, like to reduce its chaotic behavior, by adding a ‘small control term’, which slightly alters the Hamiltonian of the system.

This technique was adapted in [Boreux et al., 2010] to the case of symplectic maps. In particular, it was applied to a four-dimensional (4D) map, which models a simplified accelerator ring with sextupole nonlinearity, succeeding to increase the stability domain around the nominal circular orbit (the so-called dynamic aperture - DA). This procedure allowed the construction of a sequence of control terms of increasing complexity, that successively improve the dynamics of the original map. Actually, the larger the DA became the functional complexity of the control term increased, and the required CPU time for the evolution of orbits grew.

The aim of the present letter is to show that also simplified versions of the general control term can lead to a significant increase of the DA. For accelerators the addition of a control term can be interpreted as the addition of an extra magnet. Since magnetic fields depend only on spatial variables we investigate the efficiency of a modified control term obtained by neglecting the dependence on the momenta of the general control term constructed in [Boreux et al., 2010].

In many real accelerators the vertical extend of the beam is much smaller than its horizontal size. Such cases can be approximated by considering ideal, flat beams of zero height, whose dynamics is described by a restriction of the general 4D accelerator model to a 2-dimensional subspace. We also apply our control theory to a 2D map model of this type, improving the stability of the flat beam.

2. The model of a simplified accelerator ring

As in [Bountis & Tompaidis, 1991; Bountis & Skokos, 2006a; Boreux et al., 2010] we consider a simplified accelerator ring with linear frequencies (tunes) q_x, q_y, having a localized thin sextupole magnet. The evolution of a charged particle is modeled by the 4D symplectic map
\[
\begin{pmatrix}
 x_1' \\
 x_2' \\
 x_3' \\
 x_4'
\end{pmatrix} = \begin{pmatrix}
 \cos \omega_1 - \sin \omega_1 & 0 & 0 & 0 \\
 \sin \omega_1 & \cos \omega_1 & 0 & 0 \\
 0 & 0 & \cos \omega_2 - \sin \omega_2 & 0 \\
 0 & 0 & \sin \omega_2 & \cos \omega_2
\end{pmatrix} \begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4
\end{pmatrix} = T_S \begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4
\end{pmatrix},
\]
where x_1 (x_3) denotes the initial deflection from the ideal circular orbit in the horizontal (vertical) direction before the particle enters the element, and x_2 (x_4) is the associated momentum. Primes denote positions and momenta after one turn in the ring. The parameters ω_1 and ω_2 are related to the accelerator’s tunes q_x and q_y by $\omega_1 = 2\pi q_x$ and $\omega_2 = 2\pi q_y$. In our study, we set $q_x = 0.61803$ and $q_y = 0.4152$. The particle dynamics at the n-th turn, can be described by the sequence $(x_1(n), x_2(n), x_3(n), x_4(n))_{n\geq0}$, where the $(n+1)$-th positions and momenta are defined as a function of the n-th ones by (1).

3. Theoretical considerations and numerical techniques

For explanation, let us briefly recall the theoretical framework developed in [Boreux et al., 2010]). Map (1) naturally decomposes in an integrable part, the rotation by angles ω_1, ω_2, in the planes x_1, x_2 and x_3, x_4 respectively, and a quadratic “perturbation”, and can be obtained as the time-1 flow of the following Hamiltonian systems
\[
H(x_1, x_2, x_3, x_4) = -\omega_1 \frac{x_1^2 + x_2^2}{2} - \omega_2 \frac{x_3^2 + x_4^2}{2} \quad \text{and} \quad V(x_1, x_2, x_3, x_4) = -\frac{x_3^3}{3} + x_1 x_2^2.
\]

Using the notation of the Poisson bracket – which is defined by $\{H\}f := \{H, f\} = \sum_j \frac{\partial H}{\partial p_j} \frac{\partial f}{\partial q_j} - \frac{\partial H}{\partial q_j} \frac{\partial f}{\partial p_j}$ for any function $f(p, q)$ – map (1) can be written as
\[
\vec{x}' = T_S(\vec{x}) = e^{\{H\}}e^{\{V\}}\vec{x},
\]
where $\vec{x} = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$, $(\cdot)^T$ denotes the transpose of a matrix, and the exponential map is defined as $e^{\{H\}} = \sum_{n\geq0} \frac{\{H\}^n}{n!}f$, with $\{H\}^n f = \{H\}^{n-1}(\{H\}f)$.

Assuming that the perturbation V is small close to the origin, so that $V = o(H)$, we can construct a control map, whose generator F is small with respect to V (i.e. it satisfies $F = o(V)$), and moreover the controlled map

$$T_{\text{ctrl}} = e^{(H)} e^{(V)} e^{(F)},$$

is symplectic and conjugated to a map T, closer to $e^{(H)}$ than T (for more details the reader is referred to [Boreux et al., 2010]). Assuming, furthermore, that a non-resonant condition is satisfied for the particular choice of the q_x and q_y values of map (1), the generator F of the control map $e^{(F)}$ is

$$F = \frac{1}{2} \{ V \} \mathcal{G} V + o(V^2),$$

where \mathcal{G} is a “pseudo-inverse” operator, which satisfies $\mathcal{G}(1 - e^{-H}) \mathcal{G} = \mathcal{G}$ (see [Chandre et al., 2005] for more details).

Even truncating the generator F at order 2, and using

$$F_2 = \frac{1}{2} \{ V \} \mathcal{G} V,$$

as an approximate generator, the control map $e^{(F_2)}$ cannot, in general, be written in a closed analytic form. So, we define a truncated control map of order k

$$C_k(F_2) = \sum_{l=0}^{k} \frac{\{ F_2 \}^l}{l!},$$

and a truncated controlled map of order k:

$$T_k(F_2) = e^{(H)} e^{(V)} C_k(F_2) = T_{\text{S}} C_k(F_2).$$

Following [Boreux et al., 2010], the Smaller Alignment Index (SALI) method of chaos detection is used to determine the regular or chaotic nature of orbits of map (1) and its controlled version (4). We note, that an orbit is considered to escape and collide with the accelerator’s vacuum chamber, if at some time n, $\sum_{i=1}^{4} x_i^2(n) > 10$. For the evaluation of SALI, the tangent of the studied map is computed and employed for following the evolution of two initially linearly independent unit deviation vectors $\hat{v}_1(0), \hat{v}_2(0)$, and define the index as

$$\text{SALI}(n) = \min \{ \| \hat{v}_1(n) + \hat{v}_2(n) \|, \| \hat{v}_1(n) - \hat{v}_2(n) \| \},$$

where $\| \cdot \|$ denotes the usual Euclidean norm and $\hat{v}_i(n) = \frac{\hat{v}_i(n)}{\| \hat{v}_i(n) \|}$, $i = 1, 2$ are vectors of unit norm.

The behavior of SALI, and its generalization, the so-called Generalized Alignment Index (GALI), has been studied in detail in [Skokos, 2001; Skokos et al., 2003, 2004, 2007]. According to these studies, in 4D maps the SALI of chaotic orbits tends exponentially to zero as $\text{SALI}(n) \propto e^{-(\sigma_1 - \sigma_2)n}$ (with σ_1, σ_2 being the two largest Lyapunov characteristic exponents of the orbit), while it fluctuates around positive values, i.e. $\text{SALI}(n) \propto \text{const.}$, for regular orbits. In the case of 2D maps, the SALI tends to zero both for regular and chaotic orbits, as $\text{SALI}(n) \propto 1/n^2$ and $\text{SALI}(n) \propto e^{-\sigma_1 n}$, respectively. Thus, the completely different behaviors of SALI for regular and chaotic orbits allow us to clearly distinguish between the two case both for 4D and 2D maps.

4. The controlled 4D map

In [Boreux et al., 2010] it was shown that the 4th order controlled map $T_4(F_2)$, is a very good choice for the controlled system, since it succeeded to considerably increase the DA of the accelerator, keeping also the required CPU time for the evolution of large sets of initial conditions, at acceptable levels.

The computed generator F_2 is a complicated function of both the positions x_1, x_3 and the momenta x_2, x_4 of map (1), and its specific expression is given in the Appendix of [Boreux et al., 2010].

A simple approach for investigating the global dynamics of 4D accelerator maps, used in [Bountis & Skokos, 2006a; Boreux et al., 2010], was the computation of the maximal radius of a 4-dimensional
hypersphere centered at \((x_1, x_2, x_3, x_4) = (0, 0, 0, 0)\), containing only regular orbits. This approach provides a reliable indication of the size of the DA. Application of this methodology in [Boreux et al., 2010] showed that the controlled map \(T_4(F_2)\) has better stability properties than the uncontrolled map \((1)\). Nevertheless, one should keep in mind that the center of these hyperspheres does not bear any particular physical meaning, as it does not correspond to an experimentally realizable beam configuration.

From a physical point of view it is more meaningful to study the dynamics of the nominal orbit having \(x_1(0) = x_3(0) = 0\) for different momenta \(x_2, x_4\). For this purpose, we consider 4-dimensional hyperspheres, centered at \((0, x_2, 0, x_4)\) and compute for different values of \(x_2, x_4\), the radius \(R\) of the largest hypersphere which contains only regular orbits. We consider an orbit to be chaotic if at some time \(n\), \(\text{SALI}(n) \leq 10^{-8}\).

The outcome of this investigation is presented in Fig. 1, where the \(x_2, x_4\) coordinates of the centers of the considered hyperspheres are colored according to the value of radius \(R\) for the uncontrolled map \((1)\) (Fig. 1(a)), and the \(T_4(F_2)\) map (Fig. 1(b)). For both maps the largest value of \(R\) is obtained for \(x_2 = x_4 = 0\) (i.e. the value obtained in [Boreux et al., 2010]), while \(R\) decreases as the hypersphere’s center is moved away from \(x_2 = x_4 = 0\). This implies that large values of the momenta introduce instabilities and chaotic behavior, which reduce the size of the stability domain.

![Fig. 1. The \(x_2, x_4\) coordinates of the centers \((0, x_2, 0, x_4)\) of the 4-dimensional hyperspheres containing only regular orbits for (a) the uncontrolled map \((1)\), and (b) the \(T_4(F_2)\) map. Each point is colored according to the value of the hypersphere radius \(R\), with white color corresponding to \(R = 0\), and all orbits are evolved up to \(10^4\) iterations.](image)

Nevertheless, the controlled map \(T_4(F_2)\) succeeded to increase the stability region, since \(R > 0\) for larger value of \(x_2\) and \(x_4\), with respect to the original map. In addition, \(R\) attains larger values in the central region of the \((x_2, x_4)\) plane for the controlled map \(T_4(F_2)\), being \(R \approx 0.6\), which suggests a significant increase of the stability domain around the nominal orbit of the accelerator.

As it has already being mentioned, the controlled map \(T_4(F_2)\) has a complicated functional form, depending both on spatial variable \(x_1, x_3\) and on the conjugate momenta \(x_2, x_4\). From a practical point of view, the addition of a control term \((7)\) can be thought as the addition of an appropriate magnetic element in the ring.

On the other hand, the vector potential of a Maxwellian magnetic field which is transverse to the particle motion (i.e. without any longitudinal dependence) is a function of these transverse positions and not momenta. It is legitimate then to investigate the efficiency of a modified control term, obtained by neglecting the dependence of \(F_2\) on momenta. In practice, this means that we set \(x_2 = x_4 = 0\) in the
expression of F_2 obtained in [Boreux et al., 2010], getting
\[
F_2^{(0)}(x_1, x_3) := F_2(x_1, 0, x_3, 0) = \\
= \frac{1}{2} \left(x_1^2 - x_3^2 \right)
\left\{ -\frac{1}{6} \csc \left(\frac{3\omega_1}{2} \right) \cos \left(\frac{\omega_1}{2} \right) \left[x_1^2 - 3x_3^2 + (2x_1^2 - 6x_3^2) \cos (\omega_1) \right] + \\
+ \frac{1}{6} \csc \left(\frac{3\omega_1}{2} \right) x_1^2 \sin \left(\frac{\omega_1}{2} \right) \sin (\omega_1) - \frac{1}{4} \frac{x_3^2 \sin (\omega_2)}{\cos (\omega_2) - \cos (\omega_1 + \omega_2)} \right\} + \\
+ \frac{1}{2} \frac{x_3^2 \sin (\omega_2)}{\cos (\omega_2) - \cos (\omega_1 + \omega_2)}.
\]
(10)
This is a 4th order polynomial in the positions which may be transformed with some variable re-scaling to
the vector potential of an octupole magnet with normal symmetry [Wiedemann, 2007]:
\[
V_{oct} = b_4 Re \left(x_1 + i x_3 \right)^4,
\]
where b_4 denotes the multi-pole coefficient, related to the magnet field strength. Since $F_2^{(0)}$ does not depend
on the momenta, the control map $e^{(F_2^{(0)})}$, can be explicitly computed. The action of this map on x_2 is given by
\[
e^{(F_2^{(0)})}x_2 = x_2 + \{F_2^{(0)}\}x_2 + \frac{\{F_2^{(0)}\}_2^2}{2!}x_2 + \cdots = x_2 - \frac{\partial F_2^{(0)}}{\partial x_1},
\]
(12)
because $\{F_2^{(0)}\}x_2$ does not depend on the momenta and consequently $\{F_2^{(0)}\}_m x_2 = 0$ for all integer $m \geq 2$.
Similar relations hold also for the other variables, i.e. $\{F_2^{(0)}\} x_1 = \{F_2^{(0)}\} x_3 = \{F_2^{(0)}\} x_4 = 0$. Thus, no
truncation of the form (7) is needed, and consequently the simplified controlled map
\[
T_C^{(0)} = e^{(H)} e^{(V)} e^{(F_2^{(0)})},
\]
(13)
is symplectic by construction, as a composition of three explicitly known symplectic maps.

Since map $T_C^{(0)}$ is not explicitly constructed by the Hamiltonian Control Theory, it is interesting to
check its performance in controlling map (1) and increasing its DA. Following [Bountis & Skokos, 2006a; Boreux et al., 2010], the SALI method is used to determine the regular or chaotic nature of orbits of map $T_C^{(0)}$. In order to directly compare these results with the ones obtained in previous studies, the values of
\log_{10}SALI after 10^5 iterations are plotted in Fig. 2, to describe the dynamics in the 2-dimensional subspace
$x_2(0) = x_4(0) = 0$, for the uncontrolled map (1) (Fig. 2(a)), the $T_4(F_2)$ controlled map (8) (Fig. 2(b)), and
the simplified map $T_C^{(0)}$ (13) (Fig. 2(c)). Chaotic orbits are characterized by small SALI values and are
located in the blue colored domains, regular orbits are colored red, while white regions correspond to orbits
that escape in less than 10^5 iterations. Fig. 2 shows that both controlled maps, $T_4(F_2)$ and $T_C^{(0)}$, increase
the DA of the accelerator. It is remarkable that the simplified controlled map $T_C^{(0)}$ not only increases the
region of non-escaping orbits, with respect to the original system, but also decreases drastically the number
of chaotic orbits.

In order to perform a more global investigation of the dynamics of these maps we consider, as was done in [Bountis & Skokos, 2006a; Boreux et al., 2010], initial conditions inside a 4-dimensional hypersphere
centered at $x_1 = x_2 = x_3 = x_4 = 0$, and compute the percentages of regular and chaotic orbits as a function of
the hypersphere radius r (Fig. 3). From the red curves in Fig. 3, it is observed that the $T_C^{(0)}$ map significantly increases the domain of regular motion, not only with respect to the original map (black
curves in Fig. 3), but also with respect to the controlled map $T_4(F_2)$ (blue curves in Fig. 3). In addition,
map $T_C^{(0)}$ has the smallest percentage of chaotic orbits among the studied models, which means that orbits
of this map either escape or they are regular.

Thus, map $T_C^{(0)}$ (13) controls the original system (1) more efficiently than map $T_4(F_2)$ (8). Additional
advantages of this map is its simplicity, since it depends only on the spatial variables, and the fact that
it is symplectic by construction. Another feature, which could be of major practical importance, is that
Fig. 2. Regions of different SALI values on the \((x_1, x_3)\) plane of (a) the uncontrolled map (1), (b) the \(T_4(F_2)\) controlled map (8), and (c) the \(T_C(0)\) simplified controlled map (13). 16000 uniformly distributed initial conditions in the square \((x_1, x_3) \in [-1, 1] \times [-1, 1]\), \(x_2(0) = x_4(0) = 0\) are followed for \(10^5\) iterations, and they are colored according to their final \(\log_{10}\) SALI value. The white colored regions correspond to orbits that escape in less than \(10^5\) iterations.

Fig. 3. The percentages of regular (solid curves) and chaotic (dashed curves) orbits after \(n = 10^5\) iterations of the original map (1) (black curves), the \(T_4(F_2)\) controlled map (8) (blue curves), and the \(T_C(0)\) simplified controlled map (13) (red curves), in a 4-dimensional hypersphere centered at \(x_1 = x_2 = x_3 = x_4 = 0\), as a function of the hypersphere radius \(r\). The largest radii at which the percentage of regular orbits is 100\%, are also marked.

the generator \(F_2(0)\) (10) of the simplified control map \(T_C(0)\) can be considered as the potential induced by a magnetic element, since it depends only on spatial variables.

5. Flat beams: the controlled 2D map

In many particle accelerators the beam is very flat, i.e. its vertical extend is much smaller than the horizontal one. A simple, first, approach in investigating the dynamics of a flat beam of the 4D map (1) is to neglect the vertical coordinate \(x_3\) and its corresponding momentum \(x_4\), and pass from the initial 4D map to the
2D map

\[
\begin{pmatrix}
x'_1 \\
x'_2
\end{pmatrix} = \begin{pmatrix}
\cos \omega_1 - \sin \omega_1 \\\n\sin \omega_1 \cos \omega_1
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2 + x_1^2
\end{pmatrix} =: T^{2D} \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix},
\]

(14)

whose dynamics was studied for example in [Bountis & Skokos, 2006b].

Following for this map, the procedure described in Sect. 3, truncated control \(C_k^{2D}(F_2^{2D})\) and controlled \(T_k^{2D}(F_2^{2D})\) maps of order \(k\) are constructed, in analogy to Eqs. (7) and (8), respectively. As before, the controlled map is not necessarily symplectic. Since a map is symplectic if its Jacobian matrix \(A\) verifies in its definition domain the equality \(A^TJA - J = 0\), with \(J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\), being the standard symplectic constant matrix, the symplectic nature of \(T_k^{2D}(F_2^{2D})\) can be checked by computing the norm \(D_k\) of \(A_k^TJA_k - J\), for the Jacobian matrix \(A_k\) of the map. The results of this computation are presented in Fig. 4, for orders \(k = 4, 6, 8\), in the region \((x_1, x_2) \in [-1, 1] \times [-1, 1]\), and show that \(T_k^{2D}(F_2^{2D})\) is a good approximation of a symplectic map for \(k \geq 6\), since \(D_k \lesssim 10^{-6}\) for a large portion (\(\geq 77\%\)) of variables values. As expected, the larger the order \(k\), the closer the map \(T_k^{2D}(F_2^{2D})\) numerically approaches the symplectic condition.

In order to check whether the controlled map \(T_k^{2D}(F_2^{2D})\) with \(k \geq 4\) increases the DA of the flat beam, we use again the SALI to determine the nature of orbits in the \((x_1, x_2)\) plane, keeping in mind that SALI tends to zero both for regular and chaotic orbits of 2D maps, but with time rates which allow the clear distinction between the two cases. In particular, many initial conditions are tracked for \(10^4\) iterations in the \((x_1, x_2)\) plane, and colored according to their final \(\log_{10}\)SALI value, for the \(T^{2D}\) (Fig. 5(a)), the \(T_6^{2D}(F_2^{2D})\) (Fig. 5(b)), and the \(T_8^{2D}(F_2^{2D})\) map. Orbits with SALI \(\lesssim 10^{-10}\) are characterized as chaotic and are colored in blue, while the remaining ones are regular. Similarly to Fig. 2 white regions correspond to escaping orbits. In Figs. 5(d)–(f) the percentages of regular (blue curves), chaotic (red curves), and escaping (green curves) orbits of these three maps are plotted as a function of the radius \(r\) of a circle centered at the origin \(x_1 = x_2 = 0\).

In all models the number of chaotic orbits is practically negligible, which means that orbits are either regular or escaping. The two controlled maps succeed to increase the DA of the beam, because the domain of non-escaping orbits increases (Figs. 5(a)–(c)). Although this domain does not have a cyclical shape, the radius of the largest cycle containing only regular orbits increases from \(r \approx 0.53\) for the uncontrolled map \(T^{2D}\) (14), to \(r \approx 0.74\) for both controlled maps \(T_6^{2D}(F_2^{2D})\) and \(T_8^{2D}(F_2^{2D})\). Since both controlled maps give
Fig. 5. Upper row: Regions of different SALI values on the (x_1, x_2) plane of (a) the uncontrolled 2D map (14), (b) the $T_6^{2D}(F_2^{2D})$ controlled map, and (c) the $T_8^{2D}(F_2^{2D})$ controlled map. 16000 uniformly distributed initial conditions in the square $(x_1, x_2) \in [-1,1] \times [-1,1]$ are followed for 10^4 iterations, and they are colored according to their final log$_{10}$ SALI value. The white colored regions correspond to orbits that escape in less than 10^4 iterations. Lower row: The percentages of regular (blue curves), chaotic (red curves), and escaping (green curves) orbits after $n = 10^4$ iterations of the maps of the upper row, in a circle centered at $x_1 = x_2 = 0$, as a function of its radius r. The largest radii at which the percentage of regular orbits is 100%, are marked in panels (d)–(f). Panels in the same columns correspond to the same map.

essentially the same results, we conclude that the 6^{th} order truncation of the controlled map is sufficient for controlling the flat beam.

6. Summary and discussion

In this paper, the results of the application of control theory to a simple 4D accelerator map [Boreux et al., 2010], are being extended by using simplified versions of the control maps. In the first case, the momentum dependence of the control term is artificially removed, so as the control map is a function of the spacial coordinates and thus resembles the magnetic vector potential of a multi-pole magnet. In addition, this control map is symplectic by construction in contrast to the original one, thus avoiding the associated problems of having to choose an appropriate order of truncation in the Lie representation, for which the map satisfies numerically the symplectic condition. The efficiency of the simplified control map is remarkable, not only achieving the increase of the DA, but also shows a better performance as compared to the complete control map. The remaining important issue regarding the possibility to approximate in practice this magnetic field by a multi-pole magnet is still open, and will be addressed in a future study. In this respect, and based on the knowledge that control theory can be efficiently used to increase the DA of a toy model, the studies can be extended by investigating the possibility of imposing a control map with the functional form similar to eq. (11), and compute the associated multi-pole coefficients which achieve the best increase in the DA.

In the second case, the same theory is applied to a 2D version of the map, modeling flat beams, as it is the case in electron and positron low emittance rings (i.e. with small beam sizes), where the vertical beam size is several orders of magnitude smaller than the horizontal one and thus the dynamics studies can be restricted to that plane. This 2D control map presents the same characteristics as the original map, i.e.
increase of the DA, for a truncation order equal to 6.

In all our studies, the SALI indicator was mainly used for showing the improvement of control in the DA. In future work, we plan to apply the frequency map analysis method (e.g. see [Laskar, 1999] and references therein) in this map in order to understand the dynamical details of this improvement with respect to resonance excitation and diffusion.

Acknowledgments

Numerical simulations were made on the local computing resources (CLUSTER URBM–SYSDYN) at the University of Namur (FUNDP, Belgium). Ch. S. was partly supported by the European research project “Complex Matter”, funded by the GSRT of the Ministry Education of Greece under the ERA-Network Complexity Program

References

Bountis, T. & Skokos, Ch. [2006] “Space charges can significantly affect the dynamics of accelerator maps” Physics Letters A 358 pp. 126–133

